1	Q.	Please confirm that Exhibit 30 – Section 6.5, 6.6 and 6.7 stands as the Design Basis
2		for the cost estimated arrangement (both capital and operating) for the Labrador
3		HVDC scenario.
4		
5		
6	Α.	Nalcor confirms that Exhibit 30 – Section 6.5, 6.6 and 6.7 stands as the Basis of
7		Design, which was used for the DG2 CPW analysis. The Basis of Design will be
8		further defined during detailed engineering and updated as necessary at DG3.

1	Q.	Page 3 of the "Synopsis of 2010 Generation Expansion Decision" states that the
2		reliability criteria governing capacity requirements is a Loss of Load Hours (LOLH)
3		target of not more than 2.8 hours per year. What is the basis for the value of "2.8
4		hours" in the LOLH criteria?
5		
6		
7	A.	Please see Section 3.1 - Generation Planning Criteria of Nalcor's Submission to the
8		Board of Commissioners of Public Utilities with respect to the Reference from the
9		Lieutenant-Governor in Council on the Muskrat Falls Project November 10, 2011 for
10		a description of the basis of the Loss of Load Hours (LOLH) target of not more than
11		2.8 hours per year.

1	Q.	The Island Pond 2006 study shows a capital cost estimate of \$173,592,362, the
2		AFUDC and Escalation Calculation (Batch 06 NHI-Nalcor-49.3 AFUDC and Escalation)
3		shows a "Cap Cost In" of \$166,220,000. Please show how these individual costs are
4		derived.
5		
6		
7	A.	Referring to the response to MHI-Nalcor-121, the direct cost for Island Pond in
8		2006\$ is \$150,308,033. This amount is then escalated to 2010\$ to derive the \$166.2
9		million used as an input to Strategist. As indicated in MHI-Nalcor-121 there is a
10		minor rounding difference.

1	Q.	Exhibit 30 – LCP Design Progression indicates "Fish habitat will be based on
2		compensation strategy agreed with DFO". It also indicates a "Fish Compensation
3		Flow will be approximately 30% of mean annual flow". What variations in
4		generation from Muskrat Falls could be expected as a result of changes in projected
5		in stream flow requirements? Please show anticipated seasonal generation profile
6		of Muskrat Falls.
7		
8		
9	A.	The requirement of 30% mean annual flow for fish compensation flow is a
10		requirement for the impoundment of the reservoir during construction and is not
11		an operations requirement.

1	Q.	In Exhibit 15m why was the HVDC line cost not rolled into the cost of service pricing
2		for Muskrat Falls?
3		
4		
5	Α.	Exhibit 15 provides the internal rate of return calculation for Muskrat Falls based on
6		its capital costs and net cash flows. As outlined in Exhibit 36 and MHI-PUB-58(h),
7		the underlying price for Muskrat Falls power has not been derived in a traditional
8		cost of service manner. The HVdc line that is included in the CPW analysis is, by
9		contrast, costed on a traditional cost of service basis.
10		
11		The reason for this different treatment of costs is that while investments in power
12		generation facilities in open markets are typically not regulated on selling price,
13		transmission investments, in most instances, are recovered through a cost of
14		service based model. Nalcor wished to ensure that future pricing for transmission
15		services on the Labrador Island Link (LIL) would be consistent with this established
16		model.

1	Q.	Both Schedule A – "The Project" and Schedule B – "Isolated Island Option" to the
2		Terms of Reference refer to the period 2030 – 2067 as follows:
3		
4		In Schedule "A" – "2030 – 2067 Primarily thermal units for system reliability
5		support" and in Schedule "B" – "2030 – 2067 Holyrood replacement;
6		additional thermal."
7		
8		Given that thermal based power and energy can be generated from various fuel
9		types, please explain what fuel types were considered for providing thermal power
10		in the 2030 – 2067 timeframe under Schedule A and B. Please also explain, of the
11		fuel types considered, the reason for choosing and excluding (as applicable) fuel
12		types from thermal generation in this period.
13		
14		
15	Α.	The fuel sources considered by Nalcor are discussed in detail in Section 4.2 of
16		Nalcor's Submission filed with the Board on November 10, 2011. Following is a
17		summary of Nalcor's conclusions on the various thermal generation alternatives, as
18		extracted from the November 10 submission to the Board:
19		
20		Nuclear (Volume 1, Section 4.2.1)
21		Given that nuclear generation a) is prevented by provincial legislation and b) would
22		not integrate well into the Isolated Island system, nuclear generation was screened
23		out as a possible supply option alternative.

Page 2 of 3

1	Natural Gas (Volume 1, Section 4.2.2)
2	Given the lack of a confirmed development plan for Grand Banks natural gas, the
3	small domestic requirement in comparison to the economic threshold for
4	development, as well as the varying uses by operators, Nalcor has screened out
5	domestic natural gas as a supply option.
6	
7	Liquefied Natural Gas (LNG) (Volume 1, Section 4.2.3)
8	When analyzed from a cost perspective, LNG supplied at Asian prices virtually
9	mirrors the forecasted cost of fuel for the Holyrood Thermal Generating Station.
10	This means there is no clear advantage to LNG for rate payers. Nalcor's extensive
11	analysis of supply alternatives show that the Interconnected Island Alternative,
12	specifically Muskrat Falls and LIL, is considerably less expensive than the Isolated
13	Island alternative, which is a predominantly thermal future.
14	
15	Coal (Volume 1, Section 4.2.4)
16	Because of uncertainty in costs and feasibility associated with meeting gazetted
17	federal regulations, there is significant risk in pursuing coal-fired generation as a
18	resource option. Carbon capture and storage technology (CCS) would be required
19	for a coal-fired facility to achieve the proposed federal target. This unproven
20	technology is still at the research and development phase and has not been
21	deployed on a commercial scale. Saskatchewan recently approved a \$1.2 billion
22	project to implement CCS demonstration project on the 110 MW Unit 3 of
23	SaskPower's Boundary Dam thermal facility.
24	
25	Given the potential for GHG regulation and the uncertainty and cost associated with
26	CCS coal fired generation was screened out as an alternative source for the Isolated
27	Island alternative.

Page 3 of 3

1	Heavy Fuel Oil (HFO) (Volume 1, Section 4.2.5)
2	Continued oil-fired generation at the Holyrood plant is viewed as a viable
3	alternative in both the short- to medium-term. Consequently, the continued
4	operation of Holyrood with the appropriate pollution abatement technology was
5	included in the generation expansion alternatives.
6	
7	Light Fuel Oil (LFO) (Volume 1, Section 4.2.6 for Simple Cycle Combustion Turbine
8	and Section 4.2.7 for Combined Cycle Combustion Turbine)
9	Combustion turbine technology is an integral part of the resource mix on the
10	Isolated Island system today. CTs are applicable and necessary supply resource for
11	both the Isolated Island alternative and the Interconnected Island alternative.
12	Consequently, the combustion turbine technology was included in the generation
13	expansion alternatives.
14	
15	CCCTs are an applicable supply resource for both the Isolated Island alternative and
16	the Interconnected Island alternative. Consequently, the combined cycle
17	combustion turbine technology was included in the generation expansion
18	alternatives.
19	
20	Biomass (Volume 1, Section 4.2.9)
21	While biomass and other co-generation alternatives, when economically feasible,
22	will be considered as future supply alternatives, they are not considered to be
23	appropriate replacements for large-scale generation requirements due to the
24	significant costs and risks around securing significant supply of feedstock. On this
25	basis, biomass was screened out as an Isolated Island supply alternative.

1	Q.	Further to the previous question, has LNG been excluded for consideration as a
2		source of thermal generation and if so, what assumptions did Nalcor make as
3		regards both the future availability and pricing of LNG to meet the island's energy
4		needs in excluding it as an option.
5		
6		
7	Α.	Nalcor's assessment of LNG is provided in Section 4.2.3 of its Submission to the
8		Board.
9		With respect to availability and pricing of LNG, Nalcor is of the view that:
10		a) While LNG supplies would be available from the global market for power
11		generation purposes in Newfoundland, the identified market in Newfoundland
12		is small. Approximately 100 million standard cubic feet per day would be
13		required on peak for power generation.
14		b) The price for LNG would be at a modest discount to equivalent oil pricing
15		because
16		a. The only available alternative to LNG is distillate, and
17		b. Long term firm utility supply contracts for LNG are frequently linked to
18		oil prices. This is the case in supply contracts for Asian utilities.
19		Given the small Newfoundland market and the lack of alternatives to heavy fuel oil
20		or distillate for thermal generation in the Isolated Island alternative, Nalcor expects
21		LNG delivered to Newfoundland to be priced at a relatively smaller discount to oil
22		than could be achieved in larger markets with greater diversity of alternatives, such
23		as domestic natural gas.

Page 2 of 2

1	Navigant reached the same conclusion in its Independent Supply Decision Review: ¹
2	"Navigant estimates that the capital cost of an 84,000 Mcfd
3	regasification and storage facilities would run in the range of \$1
4	billion, plus the capital required for the new natural gas CCCT.
5	
6	The commodity costs for LNG also need to be considered. The prices
7	for long term, firm supply of LNG are normally linked to crude oil
8	prices. As such, any long term utility contract that would be
9	necessary for deliveries to the regasification facility in Newfoundland
10	would see LNG prices linked to oil prices. In Navigant's opinion, the
11	delivered prices to a LNG regasification facility sited on the Island
12	under a long term contract are expected to be at a modest discount
13	to the price of fuel oil Nalcor is already purchasing therefore offering
14	no clear economic advantage for LNG as a fuel source.
15	
16	Although the current tie between LNG prices and crude oil in the
17	global LNG market is one that could change towards gas on gas
18	pricing in the future, the market for long term, firm supply of LNG is
19	currently, and for the foreseeable future is expected to be,
20	referenced to oil."

1	Q.	Consumer Question: On June 17, 2009 the NL Gov issued a press release "Province
2		Positions Hydro To Make Critical Investments in infrastructure" to permit Hydro to
3		earn a a(sic) return on equity equal to Newfoundland Power". The previous Hydro
4		return was 4.47 % Nalcor uses a 10 % return in the Muskrat study (see p 17 Nalcor
5		Presentation to PUB in July 2011). Please provide a detailed analysis by year of the
6		impact of the increase in rate of return from 4.4 7 % to 10 % (an increase of 5.53 %)
7		on the consumer power rates over the 50 years project analysis period?
8		
9		
10	Α.	Consistent with the Terms of Reference and the Reference Question, Nalcor's
11		analyses for this proceeding have considered the Cumulative Present Worth (CPW)
12		of the Interconnected Island alternative and the Interconnected Island alternative.
13		The rate analysis requested does not assist consideration of the Reference
14		Question.
15		
16		The reference in line 6 to "rate of return" should refer to "regulated return on
17		equity". Please note the following rates of return, including return on equity and
18		cost of debt, are used in Nalcor's analyses:
19		
20		Regulated Assets
21		The rate of return for regulated assets in this analysis is 8.0% ¹ . This rate of return is
22		based on the following formula:
23		
24		Cost of debt x percentage of debt + cost of equity x percentage of equity
25		7.4% x 75 % + 10% x 25% = 8.0 %

¹ Nalcor's presentation to the Board, July 2011, page 17

Page 2 of 2

1	Non-regulated Assets
2	The rate of return for the Muskrat Falls generation facility (non-regulated asset) in
3	this analysis is 8.4% ² .
4	
5	The return on equity used in the analysis completed by Nalcor (i) is consistent with
6	the direction given by the Province, as announced on June 17, 2009, and (ii) was
7	established based on the advice of Nalcor's financial advisors, who have advised
8	that a return on equity in the range of the rate used for modeling for both the
9	Labrador Island Transmission Link and Muskrat Falls would be required in order to
10	obtain financing for the assets under construction.
11	
12	Based on these considerations, using a return on equity which would preclude
13	access to capital to construct either Muskrat Falls or the Labrador Island
14	Transmission Link, and which would be inconsistent with previous direction
15	provided by the Government of Newfoundland and Labrador, would not assist
16	consideration of the Reference Question.

² Nalcor's presentation to the Board, July 2011, page 22

1	Q.	Consumer Question: Please provide the impact on Muskrat project costs of the
2		5.53% increase in the rate or (sic) return from 4.47% to 10%.
3		
4		
5	Α.	Please refer to Nalcor's response to CA/KPL-Nalcor-18.

1	Q.	Consumer Question: The Muskrat Falls project cost is financed 75% debt/25%
2		equity. Please provide a 50 year schedule of the 25% equity in the Muskrat Falls
3		project. Please show the opening equity + the yearly additions - the yearly
4		reductions = end of year equity by each year of the 50 years.
5		
6		
7	Α.	The Interconnected Island alternative includes the Muskrat Falls generating facility
8		and the Labrador-Island Transmission Link between Muskrat Falls in Labrador and
9		Soldier's Pond on the Avalon Peninsula. For analysis, Nalcor has assumed the
10		Labrador-Island Transmission Link was financed on a regulated cost-of-service basis
11		with 75% debt and a 10% return on equity. The Muskrat Falls generating facility
12		was assumed to be financed with 100% equity with a cost-based escalating rate
13		established to provide an 8.4% internal rate of return based on sales to the Island.
14		
15		Assumptions common to all generation expansion alternatives, including "regulated
16		financial assumptions", are provided on page 17 of Nalcor's July 2011 presentation
17		to the Board ¹ . The methodology and calculations to establish costs and rates for
18		the Muskrat Falls generating project are more fully described in Exhibit 36 and the
19		response to Request for Information MHI-Nalcor-58.
20		
21		Please refer to the attached schedule of Shareholder's Equity, which includes both
22		the Muskrat Falls generating facility and the Labrador Island Transmission Link.

¹ http://www.pub.nl.ca/applications/MuskratFalls2011/files/presentation/Nalcor-ProjectOverview-July18-11.pdf

CA/KPR-Nalcor-20 Muskrat Falls Review Page 2 of 2

SHAREHOLDER'S EQUITY (\$ millions)

Muskrat Falls Generating Facility (100% Equity)						Labrador-Island Transmission Link (25% Equity)					
						-					
Project Yr	.			Less Dividends &	F . !!		. .			Less Dividends &	F 1:
Ending	Opening	Plus Equity	Plus Net	Return of Equity	Ending		Opening	Plus Equity	Plus Net	Return of Equity	Ending
JUN 30	вајапсе	Contributions	income	Contributions	вајапсе		вајапсе	Contributions	income	Contributions	вајапсе
2010	-	33.80	-	-	33.80	2010	-	109.65	-	-	109.65
2011	33.80	59.98	-	-	93.79	2011	109.65	20.30	-	-	129.94
2012	93.79	272.02	-	-	365.80	2012	129.94	218.96	-	-	348.91
2013	365.80	643.86	-	-	1,009.66	2013	348.91	-	37.00	-	385.91
2014	1,009.66	795.69	-	-	1,805.35	2014	385.91	-	39.30	-	425.21
2015	1,805.35	514.43	-	-	2,319.78	2015	425.21	59.60	45.70	-	530.51
2016	2,319.78	428.72	-	-	2,748.50	2016	530.51	52.00	55.79	-	638.31
2017	2,748.50	104.41	107.66	-	2,960.57	2017	638.31	-	63.19	(75.96)	625.54
2018	2,960.57	-	82.00 01 EC	(200.04)	2,843.19	2018	625.54		61.92	(74.68)	612.78
2019	2,045.19	-	101 62	(152.00)	2,702.75	2019	600 70		50.07	(72.73)	597.24
2020	2,782.73	-	101.05	(102.00)	2,722.32	2020	587 24		58.14	(72.83)	575.63
2021	2,661.90	-	128.77	(189.14)	2,601.53	2021	575.63		56.91	(69.97)	562.58
2023	2,601.53	-	143.85	(204.21)	2,541.18	2023	562.58		55.61	(68.66)	549.52
2024	2,541.18	-	164.69	(224.94)	2,480.92	2024	549.52		54.30	(67.35)	536.47
2025	2,480.92	-	176.16	(236.53)	2,420.55	2025	536.47		52.99	(66.05)	523.41
2026	2,420.55	-	186.98	(247.38)	2,360.14	2026	523.41		51.77	(63.23)	511.95
2027	2,360.14	-	200.78	(261.13)	2,299.79	2027	511.95		50.54	(63.63)	498.86
2028	2,299.79	-	218.55	(275.70)	2,242.65	2028	498.86		49.23	(62.32)	485.77
2029	2,242.65	-	237.98	(294.97)	2,185.66	2029	485.77		47.92	(61.02)	472.68
2030	2,185.66	-	267.06	(323.88)	2,128.83	2030	472.68		46.61	(59.71)	459.58
2031	2,128.83	-	281.83	(338.94)	2,071.73	2031	459.58		45.39	(56.68)	448.30
2032	2,071.73	-	297.10	(354.23)	2,014.59	2032	448.30		44.17	(57.31)	435.16
2033	2,014.59	-	312.83	(369.88)	1,957.54	2033	435.16		42.86	(56.00)	422.02
2034	1,957.54	-	329.04	(386.12)	1,900.46	2034	422.02		41.55	(54.68)	408.89 205 75
2035	1,900.40	_	343.78	(402.83)	1,843.35	2035	395 75		39.02	(50.11)	384.66
2030	1,786.27	_	377.80	(434.85)	1.729.22	2030	384.66		37.81	(50.99)	371.47
2038	1.729.22	-	378.11	(435.50)	1.671.83	2038	371.47		36.49	(49.67)	358.29
2039	1,671.83	-	395.08	(452.15)	1,614.76	2039	358.29		35.17	(48.35)	345.11
2040	1,614.76	-	413.01	(470.10)	1,557.67	2040	345.11		33.85	(47.04)	331.92
2041	1,557.67	-	430.48	(487.49)	1,500.66	2041	331.92		32.65	(43.52)	321.05
2042	1,500.66	-	448.38	(505.43)	1,443.61	2042	321.05		31.44	(44.68)	307.81
2043	1,443.61	-	466.83	(523.87)	1,386.57	2043	307.81		30.12	(43.36)	294.57
2044	1,386.57	-	485.81	(542.89)	1,329.48	2044	294.57		28.79	(42.03)	281.33
2045	1,329.48	-	505.39	(562.36)	1,272.52	2045	281.33		27.47	(40.71)	268.09
2046	1,272.52	-	525.48	(582.49)	1,215.51	2046	268.09		26.28	(36.90)	257.47
2047	1,215.51	-	546.19	(603.18)	1,158.51	2047	257.47		25.08	(38.38)	244.16
2048	1,158.51	-	553.98	(611.03)	1,101.47	2048	244.16		23.75	(37.05)	230.86
2049	1,101.47	-	5/5.89	(655.37)	1,044.55 087 50	2049	230.80		22.42	(35.72)	217.50
2050	987 59	_	620.29	(677.27)	930.62	2050	217.30		19.91	(34.39)	193 97
2052	930.62	-	642.75	(699.79)	873.58	2052	193.92		18.72	(32.10)	180.54
2053	873.58	-	665.84	(722.73)	816.70	2053	180.54		17.39	(30.76)	167.17
2054	816.70	-	689.57	(746.51)	759.76	2054	167.17		16.05	(29.42)	153.80
2055	759.76	-	713.28	(770.23)	702.82	2055	153.80		14.71	(28.08)	140.43
2056	702.82	-	737.63	(794.64)	645.81	2056	140.43		13.54	(23.57)	130.40
2057	645.81	-	762.68	(819.52)	588.97	2057	130.40		12.37	(25.82)	116.95
2058	588.97	-	784.59	(841.56)	531.99	2058	116.95		11.02	(24.47)	103.50
2059	531.99	-	801.25	(858.33)	474.91	2059	103.50		9.68	(23.13)	90.05
2060	474.91	-	818.24	(875.40)	417.75	2060	90.05		8.33	(21.78)	76.60
2061	417.75	-	835.58	(892.56)	360.77	2061	76.60		7.18	(16.84)	66.93
2062	360.77	-	853.25	(910.31)	303.70	2062	66.93		6.02	(19.56)	53.39
2063	303.70	-	871.27	(928.33)	246.65	2063	53.39		4.66	(18.20)	39.85
2064	246.65	-	889.65	(946.79)	189.50	2064	39.85		3.31	(16.85)	26.31
2065	189.50	-	908.40	(965.35)	132.55	2065	26.31		1.95	(15.50)	12.//
2000	132.55	-	927.51	(984.54)	10 40	2000	12.//		0.01	(10.07) (1.10)	3.51
2067	/5.51	-	947.10	(1,004.12)	18.49	2067	3.51		0.31	(1.18)	2.03